Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: covidwho-2240132

ABSTRACT

COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.


Subject(s)
COVID-19 , Platelet Activating Factor , Humans , Cross-Sectional Studies , Endocannabinoids , Glucocorticoids/therapeutic use
2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2066137

ABSTRACT

As a result of SARS-CoV-2 infection, inflammation develops, which promotes oxidative stress, leading to modification of phospholipid metabolism. Therefore, the aim of this study is to compare the effects of COVID-19 on the levels of phospholipid and free polyunsaturated fatty acids (PUFAs) and their metabolites produced in response to reactions with reactive oxygen species (ROS) and enzymes (cyclooxygenases-(COXs) and lipoxygenase-(LOX)) in the plasma of patients who either recovered or passed away within a week of hospitalization. In the plasma of COVID-19 patients, especially of the survivors, the actions of ROS and phospholipase A2 (PLA2) cause a decrease in phospholipid fatty acids level and an increase in free fatty acids (especially arachidonic acid) despite increased COXs and LOX activity. This is accompanied by an increased level in lipid peroxidation products (malondialdehyde and 8-isoprostaglandin F2α) and lipid mediators generated by enzymes. There is also an increase in eicosanoids, both pro-inflammatory as follows: thromboxane B2 and prostaglandin E2, and anti-inflammatory as follows: 15-deoxy-Δ-12,14-prostaglandin J2 and 12-hydroxyeicosatetraenoic acid, as well as endocannabinoids (anandamide-(AEA) and 2-arachidonylglycerol-(2-AG)) observed in the plasma of patients who recovered. Moreover, the expression of tumor necrosis factor α and interleukins (IL-6 and IL-10) is increased in patients who recovered. However, in the group of patients who died, elevated levels of N-oleoylethanolamine and N-palmitoylethanolamine are found. Since lipid mediators may have different functions depending on the onset of pathophysiological processes, a stronger pro-inflammatory response in patients who have recovered may be the result of the defensive response to SARS-CoV-2 in survivors associated with specific changes in the phospholipid metabolism, which could also be considered a prognostic factor.


Subject(s)
COVID-19 , Endocannabinoids , Arachidonic Acids/metabolism , Dinoprostone/metabolism , Eicosanoids/metabolism , Endocannabinoids/metabolism , Fatty Acids, Nonesterified , Hospitalization , Hospitals , Humans , Hydroxyeicosatetraenoic Acids , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipid Peroxidation , Lipoxygenase/metabolism , Malondialdehyde , Phospholipases A2/metabolism , Phospholipids/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Survivors , Thromboxane B2 , Tumor Necrosis Factor-alpha/metabolism
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1994082

ABSTRACT

Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory-a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent ß-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.


Subject(s)
Endocannabinoids , Monoacylglycerol Lipases , Animals , Endocannabinoids/pharmacology , Hyperalgesia/drug therapy , Lipopolysaccharides/toxicity , Mice , Neuroinflammatory Diseases , Spinal Cord
4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1884210

ABSTRACT

This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.


Subject(s)
COVID-19 , Cannabinoids , Angiotensin II/metabolism , Cannabinoids/pharmacology , Endocannabinoids/pharmacology , Humans , Receptor, Angiotensin, Type 1/metabolism , Receptors, Angiotensin/metabolism , Receptors, Cannabinoid , Renin/pharmacology , Renin-Angiotensin System
5.
Diabetes Metab Syndr ; 16(5): 102499, 2022 May.
Article in English | MEDLINE | ID: covidwho-1821209

ABSTRACT

BACKGROUND AND AIMS: The COVID-19 pandemic has prompted researchers to look for effective therapeutic targets. The effect of endocannabinoid system against infectious diseases is investigated for several years. In this study, we evaluated the expression level of CNR1 and CNR2 genes in patients with COVID-19 with and without diabetes to provide new insights regarding these receptors and their potential effect in COVID-19 disease. METHODS: In this study, peripheral blood monocytes cells (PBMCs) were isolated from eight different groups including COVID-19 patients, diabetic patients, and healthy individuals. RNA were extracted to evaluate the expression level of CNR1 and CNR2 genes using real-time PCR. The correlation between the expression levels of these genes in different groups were assessed. RESULTS: A total of 80 samples were divided into 8 groups, with each group consisting of ten samples. When comparing severe and moderate COVID-19 groups to healthy control group, the expression levels of the CNR1 and CNR2 genes were significantly higher in the severe and moderate COVID-19 groups. There were no significant differences between the mild COVID-19 group and the healthy control group. It was found that the expression levels of these genes in patients with diabetes who were infected with SARS-COV-2 did not differ across COVID-19 groups with varying severity, but they were significantly higher when compared to healthy controls. CONCLUSION: Our study suggests the possible role of endocannabinoid system during SARS-COV-2 pathogenicity as the expression of CNR1 and CNR2 were elevated during the disease.


Subject(s)
COVID-19 , Diabetes Mellitus , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , COVID-19/blood , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/virology , Endocannabinoids/pharmacology , Gene Expression , Humans , Pandemics , Receptor, Cannabinoid, CB1/biosynthesis , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/biosynthesis , Receptor, Cannabinoid, CB2/genetics , SARS-CoV-2
6.
Neuropharmacology ; 207: 108935, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1586929

ABSTRACT

AIMS: Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect off PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS: Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS: PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3ß. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE: PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.


Subject(s)
Acetaminophen/pharmacology , Antipyretics/pharmacology , Benzamides/pharmacology , Carbamates/pharmacology , Enzyme Inhibitors/pharmacology , Hippocampus/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Receptor, Cannabinoid, CB1/metabolism , Reperfusion Injury/metabolism , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Endocannabinoids/metabolism , Hippocampus/blood supply , Hippocampus/metabolism , Hippocampus/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Polyunsaturated Alkamides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/physiopathology
7.
Front Immunol ; 12: 631233, 2021.
Article in English | MEDLINE | ID: covidwho-1575223

ABSTRACT

Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Cannabinoids/therapeutic use , Cannabis/immunology , Cytokine Release Syndrome/therapy , Phytotherapy , SARS-CoV-2/physiology , Endocannabinoids/metabolism , Humans , Pandemics
8.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1542428

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
9.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1458663

ABSTRACT

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Subject(s)
Cannabinoids/pharmacology , Endocannabinoids/metabolism , Respiratory Tract Diseases/drug therapy , Animals , Cannabinoids/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Receptors, Cannabinoid/immunology , Receptors, Cannabinoid/metabolism , Respiratory Tract Diseases/metabolism , COVID-19 Drug Treatment
10.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1299439

ABSTRACT

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.


Subject(s)
Endocannabinoids/metabolism , Metabolic Networks and Pathways , Receptors, Cannabinoid/metabolism , Animals , Appetite Regulation , Carbohydrate Metabolism , Endocannabinoids/immunology , Humans , Lipid Metabolism , Neoplasms/etiology , Neoplasms/metabolism , Respiration Disorders/immunology , Respiration Disorders/metabolism
11.
Br J Pharmacol ; 179(10): 2121-2127, 2022 05.
Article in English | MEDLINE | ID: covidwho-1297572

ABSTRACT

COVID-19 (SARS-CoV-2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID-19, there is growing concern about long-term effects of COVID-19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID-19 but also for preventing Long Covid are needed, and would mitigate against long-lasting health burden and economic costs, in addition to saving lives. COVID-19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID-19-related health complications. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/complications , Endocannabinoids , Humans , Lung , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
12.
Drug Metab Rev ; 53(4): 478-490, 2021 11.
Article in English | MEDLINE | ID: covidwho-1121273

ABSTRACT

The SARS-Cov-2 virus caused a high morbidity and mortality rate disease, that is the COVID-19 pandemic. Despite the unprecedented research interest in this field, the lack of specific treatments leads to severe complications in a high number of cases. Current treatment includes antivirals, corticosteroids, immunoglobulins, antimalarials, interleukin-6 inhibitors, anti-GM-CSF, convalescent plasma, immunotherapy, antibiotics, circulation support, oxygen therapy, and circulation support. Due to the limited results, until specific treatments are available, other therapeutic approaches need to be considered. The endocannabinoid system is found in multiple systems within the human body, including the immune system. Its activation can lead to beneficial results such as decreased viral entry, decreased viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-γ. Moreover, endocannabinoid system activation can lead to an increase in anti-inflammatory cytokines, mainly represented by IL-10. Overall, the cannabinoid system can potentially reduce pulmonary inflammation, increase the immunomodulatory effect, decrease PMN infiltration, reduce fibrosis, and decrease viral replication, as well as decrease the 'cytokine storm'. Although the cannabinoid system has many mechanisms to provide certain benefits in the treatment of SARS-CoV-2 infected patients, research in this field is needed for a better understanding of the cannabinoid impact in this situation.


Subject(s)
COVID-19 , Endocannabinoids , COVID-19/therapy , Humans , Immunization, Passive , Pandemics , SARS-CoV-2 , COVID-19 Serotherapy
13.
Int J Mol Sci ; 22(2)2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-1030147

ABSTRACT

Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson's disease, Tourette's syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.


Subject(s)
Cannabinoids/pharmacology , Cannabis/chemistry , Drug Discovery , Phytochemicals/pharmacology , Terpenes/pharmacology , Animals , Cannabinoids/chemistry , Cannabinoids/therapeutic use , Drug Synergism , Endocannabinoids/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Receptors, Cannabinoid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Terpenes/chemistry , Terpenes/therapeutic use , Tourette Syndrome/drug therapy , Tourette Syndrome/metabolism , COVID-19 Drug Treatment
14.
Trials ; 21(1): 890, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-895024

ABSTRACT

OBJECTIVES: In this study, we investigate the effect of boron-containing compounds and oleoylethanolamide supplementation on the recovery trend in patients with COVID-19. TRIAL DESIGN: The current study is a single-center, randomized, double-blind, placebo-controlled clinical trial with parallel groups. PARTICIPANTS: The inclusion criteria include male and female patients≥18 years of age, with a confirmed diagnosis of SARS-CoV-2 infection via polymerase chain reaction (PCR) and/or antibody test and with written informed consent to participate in this trial. The exclusion criteria include regular use of any other supplement, severe and critical COVID-19 pneumonia, pregnancy and breastfeeding. This study is being conducted at Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. INTERVENTION AND COMPARATOR: Patients are randomly assigned to four groups. The first group (A) will take one capsule containing 5 mg of boron compounds twice a day for two weeks. The second group (B) will take one capsule containing 200 mg oleoylethanolamide twice a day for two weeks. The third group (C) will take one capsule containing 5 mg boron compounds with 200 mg oleoylethanolamide twice a day for two weeks, and the fourth group (D) does not receive any additional treatment other than routine treatments. Boron-containing compounds and oleoylethanolamide capsules will be synthesized at Nutrition Research Center of Tabriz University of Medical Sciences. MAIN OUTCOMES: The primary end point of this study is to investigate the recovery rate of clinical symptoms, including fever, dry cough, and fatigue, as well as preclinical features, including complete blood count (CBC), the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) profiles within two weeks of randomization. RANDOMISATION: Patients are randomized into four equal groups in a parallel design (allocation ratio 1:1). A randomized block procedure is used to divide subjects into one of four treatment blocks (A, B, C, and D) by a computer-generated allocation schedule. BLINDING (MASKING): The participants and investigators (enrolling, assessing, and analyzing) are blinded to the intervention assignments until the end of the study and data analysis. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The calculated total sample size is 40 patients, with 10 patients in each group. TRIAL STATUS: The protocol is Version 1.0, May 17, 2020. Recruitment began May 19, 2020, and is anticipated to be completed by October 19, 2020. TRIAL REGISTRATION: This clinical trial has been registered by the title of "Assessment of boron-containing compounds and oleoylethanolamide supplementation on the recovery trend in Patients with COVID-19: A double-blind randomized placebo-controlled clinical trial" in the Iranian Registry of Clinical Trials (IRCT). The registration number is " IRCT20090609002017N35 ", https://www.irct.ir/trial/48058 . The registration date is 17 May 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Boron Compounds , Coronavirus Infections , Drug Therapy, Combination/methods , Endocannabinoids , Oleic Acids , Pandemics , Pneumonia, Viral , Administration, Oral , Adult , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , Boron Compounds/administration & dosage , Boron Compounds/adverse effects , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Dietary Supplements , Double-Blind Method , Drug Monitoring/methods , Endocannabinoids/administration & dosage , Endocannabinoids/adverse effects , Female , Humans , Iran , Male , Oleic Acids/administration & dosage , Oleic Acids/adverse effects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Trace Elements/administration & dosage , Trace Elements/adverse effects , Treatment Outcome
16.
Arch Med Res ; 51(5): 464-467, 2020 07.
Article in English | MEDLINE | ID: covidwho-115861

ABSTRACT

The current outbreak of COVID-19 (coronavirus) has been identified by World Health Organization (WHO) as a global pandemic. With the emergence of the COVID-19 virus and considering the lack of effective pharmaceutical treatment for it, there is an urgent need to identify safe and effective drugs or potential adjuvant therapy in this regard. Bioactive lipids with an array of known health-promoting properties can be suggested as effective agents in alleviating acute respiratory stress induced by virus. The bioactive lipid amide, oleoylethanolamide (OEA), due to several distinctive homeostatic properties, including anti-inflammatory activities, modulation of immune response, and anti-oxidant effects can be considered as a novel potential pharmacological alternative for the management of COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Oleic Acids/pharmacology , Oleic Acids/therapeutic use , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL